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Main goal of this chapter

We shift our attention to commutative domains. All rings
considered are commutative.

We will establish the following classification:
Fields C ED's C PID's C UFD’s C Domains.

We will also study statements such as: If R is a UFD, then so
is R[x].
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The field of fractions
of a domain
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Field of fractions of a domain

Idea: Z is not a field, but it can be embedded into the field Q.

Definition (Field of fractions of a domain)

Let D be a domain. lIts field of fractions is

FracD = {(a,b) | a,b€ D, b# 0}/ ~
where (a, b) ~ (a',b') iff. ab' = ba' in D (think (a, b) <> a/b).

Theorem (It really is a field)
F = Frac D, equipped with (a, b) + (c, d) = (ad + bc, bd) and
(a, b)(c,d) = (ac, bd), is a field, with 0 = (0,1), 1 = (1,1).
D — F

d — (d,1

The map 1 : ) is an injective ring morphism.
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Field of fractions of a domain

Theorem (It really is a field)

F = Frac D, equipped with (a, b) + (¢, d) = (ad + bc, bd) and
(a, b)(c,d) = (ac, bd), is a field, with 0 = (0,1), 1 = (1,1).
D — F

d — (d,1)

The map ¢ : is an injective ring morphism.

Proof

Suppose that (a, b) ~ (&', b') and (c,d) ~ (c’,d"). Then also
(ad'+b'c’,b'd") ~ (ad + bc, bd), because (a'd"+ b'c’)(bd) =
a'b dd'+ bb' c'd = ab' dd' + bb' cd’" = (ad + bc)(b'd").
=~ =~ =~ ~~

Besides, b,d # 0 so bd # 0 so (ad + bc, bd) € F; thus + is
well-defined. Similarly x is well-defined, and one can check
that the ring axioms are satisfied.

We have (a, b) +(0,1) = (al+0b, b1) = (a, b) so 0 = (0, 1),
and (a, b)(1,1) = (al, bl) = (a, b), so 1 = (1,1).

O
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Field of fractions of a domain

Theorem (It really is a field)

F = Frac D, equipped with (a, b) + (c, d) = (ad + bc, bd) and
(a, b)(c,d) = (ac, bd), is a field, with 0 = (0,1), 1 = (1,1).

— is an injective ring morphism
d — (d,1) J & morphism.

The map ¢ :

Proof.

We have (a, b) = (0,1) iff. a1 = b0 iff. a = 0.

Thus if (a, b) # 0 then a#0, so(b,a)e€F;

and (a, b)(b, a) = (ab, ab) ~ (1,1) = 1 so (b,a) = (a, b) !
so F is a field.

Finally (a,1) + (b,1) = (a+ b,1) and (a,1)(b,1) = (ab,1)

so ¢ is a morphism. If a € Ker¢ then (a,1) = 0r so a=0, so ¢
is injective. O
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Field of fractions of a domain

Theorem (It really is a field)

F = Frac D, equipped with (a, b) + (c, d) = (ad + bc, bd) and

(a, b)(c,d) = (ac, bd), is a field, with 0 = (0,1), 1 = (1,1).
D — F : L :

d — (d.1) is an injective ring morphism.

The map ¢ :

¢ is an isomorphism iff. D is already a field.

FracZ = Q.

FracR[x] = R(x)
FracZ[x] = Q(x).

{P(x)/Q(x), P,Q e R[x], Q(x) # 0}.
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Euclidean domains
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Prototype: Z

Recall that in the ring Z of integers, we have the notion of
Euclidean division (division with remainder):

Theorem (Z is Euclidean)

For all a, b € Z with b # 0, there exist q,r € 7Z such that

a=bqg+r,
0<r<|b|

Fora=22and b=7, we find g=3 and r = 1.

Actually, the pair (g, r) is unique; but this is irrelevant for us.
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Euclidean domains

An ED (Euclidean Domain) is a domain D equipped with a
“size” function o : D\ {0} — Zx¢ such that for all a,b € D

with b # 0, there exist q,r € D such that

a=bqg+r,
Either r =0 or o(r) < o(b).

D = Z is Euclidean with respect to o(x) = |x|.

Every field is an ED: we can always take r = 0.

Nicolas Mascot Rings, fields, and modules



Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:
A x° +x3 +2x243x4+5 | x>+ x+2 B
Q
R
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:

A x> +x3 +2x2+3x+5 X2+ x+2 B

X3

~
Q1
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:
A x° +x3 42x243x+5 | x*+x+2 B
5, 4 3 3
QB x> +x*+2x >;
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:
A x° +x3 42x243x+5 | x*+x+2 B
5, 4 3 3
QB x> +x*+2x >;

A— QB —x*—x3 +2x>+3x+5
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:
A x> +x3 +2x°+3x+5 X° + x+2 B
QB x° 4+-x*42x3 x> —x?

N~
@] Q

A— QB —x*—x3 +2x>+3x+5
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:

A x> +x3 +2x2+3x+5 X2+ x+2 B
QB x° 4+-x*42x3 x> —x?
N~ ——
@] Q

A— QB —x*—x3 +2x>+3x+5
B —x*—x3 —2x?
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:

A x> +x3 +2x°+3x+5 X° + x+2 B
QB x° 4+-x*42x3 x> —x?
N~
@] Q
A— QB —x*—x3 +2x>+3x+5
B 5t =5 =57
4x2 +3x+5
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:

A x> +x3 +2x2+3x+5 X° + x+2 B
QB XSx*42x8 3 —x2 14
Q1 Q Q3
A— QB —x*—x3 +2x>+3x+5
@B —x*—x3 —2x2
4x2 +3x+5
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:

A x> +x3 +2x°+3x+5 X° + x+2 B
QB x° 4+-x*42x3 X3 —x% 44
Q1 Q Q3
A— QB —x*—x3 +2x>+3x+5
B 5t =5 =57
4x%+3x+5
QB 4x% +4x+8
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:
A x> +x3 +2x°+3x+5 X° + x+2 B
QB x° 4+-x*42x3 X3 —x% 44

Q1 Q2 Q3
A— QB —x*—x3 +2x>+3x+5
B —x*—x3 —2x?
4x%+3x+5
@B 4x% +4x+8
—x-3
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Euclidean domains

Theorem (Field[x] is Euclidean)

If F is a field, then F[x] is Euclidean with respect to o = deg.

We divide A= x5+ x3+2x2 +3x +5 by B = x> + x + 2:

A x> +x3 +2x°+3x+5 X° + x+2 B
QB xXx*+2x3 3 —x2 14 Q
Q1 Q Q3
A— QB —x*—x3 +2x>+3x+5
B 5t =5 =57
4x%+3x+5
@B 4x% +4x+8
R —x-3
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Euclidean domains

We divide A= x5+ x3 +2x%2 +3x +5 by B = x> + x + 2:

A x> +x3 +2x°+3x+5 X° 4+ x+2 B
QB XS+x* 4258 x3 —x2 +4
Q1 Q> Q3
A— QB —x*—x3 +2x>+3x+5
B 5t =5 =D
4x2 +3x+5
QB 4x% +4x+8
—x-3

Even if R is not a field, Euclidean division by B(x) € R[x] is
possible if the leading coefficient of B is invertible.
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Uniqueness

Let D be a domain.

Let A,B € D[x], B # 0. If there exists Q, R € D[x] such
that A= BQ + R and (R =0 or deg R < deg B), then this
pair (Q, R) is unique.

If is convenient to define deg0 = —o0, so that
deg PQ = deg P + deg Q.

If A= BQ + R = BQ' + R, then B(Q — Q') = R' — R has
degree < deg B. If Q # @', then

deg B(Q — Q') = deg B + deg(Q — Q') > deg B, absurd.
SoRQ=Q and R=A—-BQ=A—-BQ' =R J
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Roots vs. division by x — «

Let R be a ring.

Definition (Root of a polynomial)

Let P(x) € R[x]. We say that o € R is a root of P(x)
if P(a) = 0.

Let A € R[x], and B(x) = (x — a), @ € R. We can divide A
by B; the remainder will be a constant r € R. Evaluating
Ax) = (x — a)Q(x) + r at x = «, we get

r=A(x).

A(a) = 0 iff. A(x) = (x — a)Q(x) for some Q(x) € R[x].
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Roots vs. degree

Theorem (# roots < deg)

Let D be a domain, and P(x) € D[x], P # 0. If P has at
least n distinct roots in D, then n < deg P.

Induction on n. For n = 0, nothing to prove.

Suppose ay, - -+ ,a, € D are distinct roots of P(x). Then
P(x) = (x — a,)Q(x) for some Q(x) € D[x]. For all j < n,
0= P(ej) = (o — an)Q(cxj), so Qcj) =0 as D is a domain.
By induction, deg @ > n — 1, whence

deg P = deg(x — ) Q = deg(x — ) + deg Q > n. O
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Roots vs. degree
Theorem (# roots < deg)

Let D be a domain, and P(x) € D[x], P # 0. If P has at
least n distinct roots in D, then n < deg P.

If P € R[x] has degree < 10 and vanishes at x =0,1,--- , 10,
then P = 0.

Let D = 7Z/27 = {0,1}, and P(x) = x> — x € D[x].
Then P(a) = 0 for all & € D, even though P(x) # 0 in D[x]!
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Roots vs. degree

Theorem (# roots < deg)
Let D be a domain, and P(x) € D[x], P # 0. If P has at
least n distinct roots in D, then n < deg P.

Let R =Z/8Z, and P(x) = x> — 1 € R[x]. Then deg P = 2,
and yet P has 4 roots in R, namely 1, —1,3, —3.
In particular, (x —3) | P(x) = (x — 1)(x + 1)!

Nicolas Mascot Rings, fields, and modules



Principal ldeal Domains
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Principal Ideal Domains

Definition (PID)
A PID (Principal Ideal Domain) is a domain D whose ideals
are all principal, that is to say of the form

(x) =xD = {xd, d € D}

for some x € D.

Counter-example
We have seen that in D = Z[x], the ideal

I = {P(x) € Z[x] | P(0) is even}

is not principal. Therefore Z[x] is not a PID.
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ED — PID
Every ED is a PID.

Proof.

Let E be Euclidean with respect to o, and let / <E be an ideal.
If I = {0}, then / = (0) is principal.

Else, let 0 # i € | be such that o(i) = min{c(j), 0 #j € I}.

We claim that | = (/).

Clearly (i) C I. Conversely, take j € I, and Euclidean-divide it
by i:j=ig+r. If r#0, then o(r) < o(i),

yet r =i —jq € I, absurd. So r =0 and j = iq € (i),

which shows that / C (/). O

Zis a PID. If F is a field, then F[x] is a PID.
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ED — PID

Every ED is a PID.

Counter-example (Non-examinable)

_1+iV19
==

Let o € C. As o? = o — 5,

Zlol={a+ba|abeZ} CcC

is a subring of C. It can be proved that it is a PID but not
an ED.
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A semi-useless converse

Proposition
Let D be a domain. Then D[x] is a PID <= D is a field.

Proof.

We already know <, so we prove =. Let d € D, d # 0, and
consider
I = (d,x) ={dU(x) +xV(x) | U,V € D[x]} < D[x].
As D[x] is a PID, I = (G(x)) for some G(x) € D[x].
As d € I, we have d = G(x)P(x) for some P(x) € DI[x];
by degrees, G(x) = g € D is a constant.
Similarly x = G(x)Q(x) = gQ(x) for some Q(x) € D[x] of
degree 1, say Q(x) = ax + b; then ga = 1.
Thus 1 = ga = Ga € /, so there exist U, V € D[x] such that
= dU(x) + xV/(x); taking x = 0 yields 1 = dU(0). O
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Divisibility, associates,
and irreducibles
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Definition (Divisibility)

Let R be a ring, and x,y € R. We say that x divides y,
written x | y, if y = xz for some z € R.

InR=7%7,245; butin R=Q, 2|5.

x|y +sye((x)=(y) C(x). ’
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Associates

Definition (Associates)

Let R be a ring. We say that x,y € R are associates if x | y
and y | x.

Equivalently, x and y are associates iff. (x) = (y).

This is an equivalence relation.
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Associates

Definition (Associates)

Let R be a ring. We say that x,y € R are associates if x | y
and y | x.

Suppose R is a domain. Then
x and y are associates <= x = uy for some u € R*.

= As x | y, we have y = ax for some a € R. Similarly, there
exists b € R such that x = by. Then x = by = bax, so
x(1—ba)=0. If x=0, then y = ax = 0 = 1x; else, as
R is a domain, ab=1, so a,b € R*.

< Clear, since we also have y = u~1x. O
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Definition (Associates)

Let R be a ring. We say that x,y € R are associates if x | y
and y | x.

Suppose R is a domain. Then
x and y are associates <= x = uy for some u € R*.

In R =7, m and n are associates iff. m = %n.

In R = R[x], P(x) and Q(x) are associates iff. P(x) = cQ(x)
for some c € R*.

A\
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Irreducibles

Definition (Irreducible)

Let R be a ring. An element x € R is irreducible if x # 0,
x € R*, and if whenever x = yz with y,z € R, then y € R*
orz e R*.

Example

In R = Z, the irreducibles are the prime numbers and their
negatives.

Any associate to an irreducible is also irreducible.
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Unique Factorisation Domains:

introduction
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Unique Factorisation Domains

Definition (UFD)
A UFD (Unique Factorisation Domain) is a domain D in which
for every 0 < d € D

@ d can be expressed as d = up; - - - p, with u € R* and
the p; € D irreducible,

@ this factorisation is unique: if d = upy---p, = vq1 - - - qs,
then r = s, and up to re-ordering, p; is associate to q;
for all i.

Example

We will see that Z is a UFD.
The fact that 6 =2 x 3 =3 x 2 = —2 x —3 does not
contradict that! Neither does 210 = 10 x 21 = 14 x 15.
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Unique Factorisation Domains

Counter-example (Non-examinable)

Let R = Z[iv/5] = {a+ biv/5 | a,be Z} C C.
Given o = a + biv/5 € R, define
N(a) = aa = a* +5b° € Z>o.
Then N(af) = N(a)N(B), so
a€ R <= N(a)=1<+= a==+1.

The element 6 € R can be factored as 6 = 2 x 3,

but also as 6 = 77, where v = 1 + i/5.

7 is irreducible (if v = af, then N(a)N(8) = N(v) =6 so
N(a) =2 or 3, absurd), and so are 2 and 3, so these
factorisations are complete. They are also genuinely distinct
since 7y is not associate to 2 nor 3, as R* = {£1}.

So R is not a UFD.




Unique Factorisation Domains

Another way to understand the uniqueness condition is to say
that if we choose a set P C D of irreducibles such that each
irreducible is associate to exactly one p € P, then each
0+# d € D factors as d = up; - - - p, with u € R*, the p; € P,
and this factorisation is unique up to the order of the factors.

Example

For R = 7Z, we can take P = {prime numbers}, and then
every 0 # n € Z factors uniquely as n = £p; - - - p,.

For R = R[x], we have R[x]* = R*, so we can take

P = {monic irreducible polynomials}, and then every

0 # F(x) € R[x] factors uniquely as F(x) = cPy(x) - - - P,(x),
where ¢ € R[x]* = R*.
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Noetherian rings
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Noetherian rings (Non-examinable)

Definition (Noetherian)

A ring R is Noetherian if every ideal | < R is finitely generated,
meaning there exists a finite subset S C | which generates I.

Every PID is Noetherian.

R is Noetherian <= there are no infinite increasing chains of
idea/slog Il g I2 g - C R.
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Noetherian rings (Non-examinable)

R is Noetherian <= there are no infinite increasing chains of
idea/s/og Il g I2 g g R.

= Suppose Iy C h € L C --- C R are ideals. Then
| = Un>0 I, is an ideal; for instance if i,j € [, then i € [,
and j G_I,,j for some n;, n; > 0, then i, € [, for
n = max(n;, n;), so i +j € I, C I. As R is Noetherian, |
is generated by gy, -+, g5 € |. For each k <'s, let
my > 0 such that g € /,,,, and let m = max, my; then
gk € I, for all k, so I C [, absurd.

O
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Noetherian rings (Non-examinable)

R is Noetherian <= there are no infinite increasing chains of
idea/s/og /1 g I2 g g R.

< Let I <R be an ideal. Pick i € I; if I = (i1), done.
Else, pick ip € I'\ (i); if I = (i, iz), done.
Else, pick i3 € I'\ (i, i), etc.

As (1) € (i, 2) € (i, 2, 13) € -+, this terminates. O
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Noetherian rings (Non-examinable)

R is Noetherian <= there are no infinite increasing chains of
idea/s/og /1 _g_ I2 g - C R.

Counter-example

Let R = continuous functions R — R, and
l,={f € R| f(x) =0 for all x> n}.

The [, form an infinite chain, so R is not Noetherian.

Indeed, we have

U I, ={f € R| thereis xo: for all x > x, f(x) = 0};
n>0
if we had | = (f1,--- , fn), with fi(x) = 0 for x > x, then all
f € | have f(x) = 0 for x > max xk, absurd.
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Noetherian rings (Non-examinable)

R is Noetherian <= there are no infinite increasing chains of
idea/s/og Il g I2 g - C R.

Theorem (Hilbert's basis theorem)
If R is Noetherian, then so is R[x].
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Noetherian rings (Non-examinable)

Theorem (Hilbert's basis theorem)
If R is Noetherian, then so is R[x].

Proof.

Suppose by contradiction that / < R[x] cannot be finitely
generated. Let 0 # Fi(x) € | of minimal degree, and let

J1 = (F1) < R[x]. As I cannot be finitely generated, J; C /, so
let Fo(x) € | but & J; of smallest possible degree, and let

J2 = (Fl, F2)<1R[X]. Then J2 g /, so let F3(X) € | but g J2 of
smallest possible degree, and J; = (Fy, F,, F3), etc.

For each n € N, write F,(x) = a,x% + - -- where d, = deg F,
and 0 # a, € R. Clearly, d; < d, < d3 < ---; besides, the
chain (a1) C (a1, a2) C (a1, a2, a3) of ideals of R must
terminate as R Noetherian, so there exists N € N such that
ay € (ar,a, -+ ,an—1), say ay = Z,N;ll ria; for some r; € R.
Continued next slide... O
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Noetherian rings (Non-examinable)

Theorem (Hilbert's basis theorem)

If R is Noetherian, then so is R[x].

Proof.

Then / > G ZXdN dlrl I

N

-1
:(aNXdN+"')— (riaiXdN+"')
i=1
:(aNde+---)—(aNde+---)
as dy > d; for all i < N, and deg G < dy = deg Fy,
so G € Jy_1 by definition of Fy.

But Fy(x )+ Zxd"’ "riFi(x) € Jy_1, absurd. ]
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Noetherian vs. factorisation
Proposition (Non-examinable)

In a Noetherian domain, factorisations into irreducibles are
possible (but need not be unique).

Let R be Noetherian, and let 0 # x € R. If x € R*, OK. If x
is irreducible, OK. Else, we can write x = yy’, v,y € R
nonzero and not invertible. If y and y’ are irreducible, OK.
Else, if for instance y is reducible, y = y1y». If y; and y, are

irreducible, OK; else...Since --- | y1 | y | x, we have
(x) C (y) C ()1) C ---, and the inclusions are strict since z,
y», -+ are not invertible. So this terminates. O

Corollary (Examinable)

In a PID, factorisations into irreducibles are possible.
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Prime ideals,
Maximal ideals
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Prime ideals

Let R be a ring, and let /| # R be an ideal.
Definition (Prime ideal)

| is prime if forall x,y € R, xy e | = x &€l ory € I.

Equivalently, x ¢ l and y &€ | = xy & .
By convention, / = R is not prime.

Proposition

| is prime <= R/ is a domain.

Let | # R, so that R/l is not the zero ring.
I C R prime <= forall x,y e R, x,y &€l = xy & |
< forallx,y € R/I, X,y #0=Xxy #0
<= R/l is a domain. O




Maximal ideals

Definition (Maximal ideal)

Let again R be a ring and | <R an ideal. | is maximal if | # R
and whenever J D | is an ideal, then J =1 or J = R.

So it is a proper ideal which is as large as possible.

Proposition

| is maximal <= R/| is a field.

= :Let0#x€R/I. Then x€ R\ I, s0J=(x)+121,
soJ=R,sole J sol=xy+iforsomey e R and
i€l Thenxy=1.
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Maximal ideals

Definition (Maximal ideal)

Let again R be a ring and | <R an ideal. | is maximal if | # R
and whenever J D | is an ideal, then J =1 or J = R.

Proposition
| is maximal <= R/ is a field.

| be an ideal, and let j € J\ /. Then
/1, so there exists X € R/ such that
R/I, whence jx =1+ i for some i € /. Then

=jx—ied soJ=R. O

><|\H\|—
I o %
l—‘lmk
m;U+U
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Maximal ideals

Definition (Maximal ideal)

Let again R be a ring and | <R an ideal. | is maximal if | # R
and whenever J D | is an ideal, then J =1 or J = R.

Proposition
| is maximal <= R/ is a field.

Every maximal ideal is prime.
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Maximal ideals
Every maximal ideal is prime.

Counter-example

ZIx] — Z

P(x) — P(0)"’
we have R/l ~ 7 by the isomorphism theorem. Thus R// is a
domain but not a field, so / is prime but not maximal.

Let R = Z[x] and | = (x). As | = Ker

The ideal J = (5, x) strictly contains /, and is actually
L B Z|x] — Z/5Z
maximal: indeed J = Ker P(x) —> P(0) mod5

so R/J ~7/5Z is a field.
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Application to Z/nZ

Let n € N. TFAE:
© n is a prime number
@ Z/nZ is a field
© Z/nZ is a domain

1= 2: Let J D nZ be an ideal of Z. As Z is a PID, J = mZ
forsome meZ. AsnenZ C J,n€ J,som|n; asnis
prime, either m = +1 and J =7, or m = £+n and J = nZ.
Thus nZ is maximal.

2 = 3: Every field is a domain.

3 = 1: Suppose n is not prime, so that n = ab

with 1 < a,b < n. Then 0 = i = ab € Z/nZ whereas
a,b#0, so Z/nZ is not a domain. ]
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Unique Factorisation Domains:
theorems
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Divisibility in a UFD

Let D be a UFD, and let x,y € D. If x factors as up; - - - p,
and y as vq; - - - gs, Wwhere u, v € D* and the p;, g; irreducible,
then the factorisation of xy is

Xy = (uv)pl < - Prq1-- - Qs-

Usually, we pick our irreducibles only in a set of representatives
up to associates, and we gather the repeated factors. Then
factorisations are written upi" - - - p2- with the a; € N.

Given x,y € D, we may always assume that x and y have the
same irreducible factors, by allowing exponents a; = 0.

In D =7, with x = —6 and y = —45, we have
x = (—1)2'3'5° and y = (—1)2°325%.
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Divisibility in a UFD

Given x,y € D, we may always assume that x and y have the
same irreducible factors, by allowing exponents a; = 0.

In D =7, with x = —6 and y = —45, we have
x = (—1)2!315% and y = (—1)2°3251.

Then the factorisation of a product is obtained by multiplying
the units and adding the exponents of the factors.

(—1)2!3150 x (—1)20325% = (—1 x —1)21+031+250+1 — (1)213351,

Corollary (Read divisibility off factorisations)

Let D be a UFD, and x = up?* ---p¥, y = vp ... pP € D.
Then x | y = a; < b; for all i. Note that u, v play no role.
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Prime elements

Definition
Let D be a domain, and let x € D. We say that x is prime if
the ideal (x) is a prime ideal.

Equivalently, this means that for all y,z € D,
if x| yz, then x | y or x| z.

By convention, units are not prime, since R is not a prime
ideal of itself.

Counter-example

n =4 is not prime in D = Z, since 4 | 2 x 6 whereas 4 { 2 and
416.

Example (Prime elements in Z)

Take D = 7. Then n € Z is prime <= nZ is a prime ideal
<= Z/nZ is a domain <= n is & a prime number or 0.
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Prime = irreducible
Proposition (Prime = irreducible)

Let D be a domain, and let 0 # x € D. If x is prime, then x is
irreducible.

Contrapositive: Suppose x is reducible. Then x = yz

with y,z€ D\ D*. In D/(x), we have 0 =x =y Z.

If y =0, then x | y, so x and y would be associate, so x = yu
for some u € D*, but then yz = x = yu so y(z — u) =0,

yet y #0asx#0, and z # u as z ¢ D*, absurd.

So ¥y # 0, and similarly Z # 0; thus D/(x) is not a domain,

SO X is not prime. O

Nicolas Mascot Rings, fields, and modules



Prime = irreducible

Proposition (Prime = irreducible)

Let D be a domain, and let 0 #£ x € D. If x is prime, then x is
irreducible.

Counter-example

Consider again D = Z[iv/5] = {a+ biv/5 | a,b € Z} C C.
We saw that 2 € D is irreducible; however 2 is not prime:
We have 2 | 6 = 77 where y =1 +iy/5 € D, yet 2{ v, 7.
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UFD <= (prime <« irreducible)

Lemma

Let D be a domain in which factorisations exist. Then D is a
UFD < for all 0 # p € D, if p is irreducible, then p is prime.

Proof.

< Let 0 # x € D, and suppose x = up; - p, = Vq1 - - - Qs
with u,v € D* and the p;, g; irreducible, hence prime.
Then py | vgy---qs, S0 p1 | v or py | g; for some i. If
p1 | v, then v = pyx for some x € D, whence
1 =pi(xv!)so p; € DX, absurd. So p; | g;, WLOG
p1 | g1, so g1 = p1y for some y € D. As g, irreducible
and p; € D*, we have y € D*, so p; and q; are
associates, WLOG p; = ¢;. Thus
pi(up2- - pr—vqa-+-qs) = 0,50 upy -+ p, = vqa -+ - Gs;
continue. ]
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UFD <= (prime < irreducible)

Let D be a domain in which factorisations exist. Then D is a
UFD <= for all 0 # p € D, if p is irreducible, then p is prime.

= Let p € D irreducible, and let x,y € D. If p | xy, then p
is an irreducible factor of xy, hence of x or of y, so p | x
ory. L]

v
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UFD <= (prime <« irreducible)

Lemma
Let D be a domain in which factorisations exist. Then D is a
UFD <= for all 0 # p € D, if p is irreducible, then p is prime.

So in a UFD, irreducible and prime are the same concept;
and that characterises uniqueness of factorisation.
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PID = UFD

Theorem (PID = UFD)
Every PID is a UFD.

Proof.

We already know that factorisations exist in a PID; we now
show uniqueness.

Let D be a PID, let p € D irreducible and let a, b € D such
that p | ab, say ab = pz, z € D.

Since D is a PID, (p, a) = (d) for some d € D; in particular
p € (d) so p = cd for some c € D. As p is irreducible, either
ceD*orde D*.

If c € D*, then p assoc. d, so (p) = (d) > a, whence p | a.
If d € D*, then (p,a) = (d) =D > 1so1=ax+ py for
some x,y € D, and then

p | p(zx+yb) = pzx+ pyb = abx+pyb = (ax+py)b = b. []
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PID = UFD

Theorem (PID = UFD)
Every PID is a UFD.

Z is a UFD.
If F is a field, then F[x] is a UFD.
(Note: the latter statement will be superseded soon.)
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gcd and Iem in a UFD
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Greatest common divisors
Definition (gcd)

Let R be a ring, and let a,b€ R. Agcdofaandbisage R
such that g | a, b and for all d € R, ifd | a,b, then d | g.

Theorem (In UFD, gecd exists and unique up to assoc.)

Let D be a UFD, and a = up3* -- - p?, b= vp* - - - pbr € D.
min(az,b1) . min(ar,br)

Then g = p; - pr is a gcd of a and b,
and g’ € R is another gcd iff. g’ assoc. g.

W/p’lfl...pfr<:>e,-§f,-fora|| i

We want that foralld € D, d | a,b<=d | g.
Writing d = wp® - - - p% and g = w/p® - - - p&, this translates
into d; < a;, b; for all | <= d; < g; for all i. ]

Recall that wps! - - - pgr
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Greatest common divisors

Definition (gcd)

Let R be a ring, and let a,b€ R. Agcdofaandbisag e R
such that g | a, b and for all d € R, if d | a, b, then d | g.

Theorem (In UFD, gecd exists and unique up to assoc.)

Let D be a UFD, and a = up® - - - p?, b= vp* - - - pbr € D.
min(ay,b1) min(ar,br)

Then g = p; - Pr is a gcd of a and b,
and g’ € R is another gcd iff. g’ assoc. g.

In Z, ged(—6,45) = ged ((—1)213'5°,203251) = 4203150 = £3.

<
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Greatest common divisors

Definition (gcd)

Let R be a ring, and let a,b€ R. Agcdofaandbisage R
such that g | a, b and for all d € R, ifd | a,b, then d | g.

Theorem (In UFD, gcd exists and unique up to assoc.)

Let D be a UFD, and a = up® - - p?, b= vp* ... pbr € D.
min(ay,b1) pmin(a,,b,)

Then g = p;
and g’ € R is another gcd iff. g’ assoc. g.

is a gcd of a and b,

Definition (Coprime)

We say that a and b are coprime if 1 is a gcd of a and b.

So a and b are coprime iff. they have no non-unit common
factor.
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Lowest common multiples

Definition (lcm)
Let R be a ring, and let a,b € R. Anlcmofaandbisal € R

such that a,b | ¢, and for all m € R, if a,b | m, then { | m.

Theorem (In UFD, lcm exists and unique up to assoc.)

Let D be a UFD, and a = up? ---p?, b= vp? --- pbr € D.
Then ( = p{nax(al’bl) . pm@b) e an Jem of a and b,
and (' € R is another lcm iff. {' assoc. (.

We want the for all m € D, a,b | m <= | | m. Writing

m=wp;"---p and { = w’pf1 .- plr, this translates into
aj, b < m; for all i < g,‘ < m; for all . L]
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Lowest common multiples
Definition (lcm)

Let R be a ring, and let a,b € R. Anlcmofaandbisal € R
such that a,b | ¢, and for all m € R, if a,b | m, then { | m.

Theorem (In UFD, lcm exists and unique up to assoc.)

Let D be a UFD, and a = up® - - - p?, b= vp* - .- pbr € D.
Then ( = p'lnax(al’bl) o pr@nb) e an lem of a and b,
and ' € R is another Icm iff. ¢ assoc. /.

In Z, lem(—6,45) = lem ((—1)2'3!5°,203251) = 421325t = +90.
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A relation between gcd and lcm

Proposition

Let D be a UFD, and let a, b in D. Then gcd(a, b) lcm(a, b) is
associate to ab.

| 5

Proof.
For each i, the exponent of p; in gcd(a, b) lcm(a, b) is
min(a;, b;) + max(a;, b;) = a; + b;. O

In Z, gcd(—6,45) lcm(—6,45) = (£3)(£90) = £ — 6 x 45.
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Counterexample in a non-UFD

Counter-example

Let y =14 iv/5 € R=Z[iv5] = {x + yiV5 | x,y € Z}.
Recall that N(x + yiv/5) = x? + 5y? satisfies

N(aB) = N(a)N(B);
therefore, if o | B in R, then N(«) | N(B) in Z.
Suppose A € R is a gcd of @« =6 = 77 and of g = 27.
Then A | o, 8, so N(A) | N(«) = 36, N(B) = 24,
so N(A) | gcd,(36,24) = 12.
Besides, for all common divisors d of & and 3 in R, we must
have § | A in R, and in particular N(9) | N(A) in Z.
In particular, 2 | A, so 4 = N(2) | N(A); similarly, v | A, so
6 = N(v) | N(A). Thus 12 =lcm(4,6) | N(A).
In conclusion, necessarily N(A) = 12; but x> + 5y? = 12 has
no solutions, absurd. So a: and 5 do not have a gcd in R.
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The PID case

Theorem
Let D be a PID, and let a,b € D. Then
(a) + (b) = (ged(a, b)) and (a) N (b) = (lem(a, b)).

Even though the elements gcd(a, b) and lcm(a, b) are only
defined up to associates, the ideals (gcd(a, b)) and
(lem(a, b)) are well-defined.
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The PID case

Let D be a PID, and let a,b € D. Then
(a) + (b) = (ged(a, b)) and (a) N (b) = (lem(a, b)).

Since D is a PID, we have (a) + (b) = (g) for some g € D.
Then for all d € D,

d|ab<=abe (d) < (a),(b) C (d)
= (g)=()+t(b)C(d)+=d|g

so g is a gcd.
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The PID case

Let D be a PID, and let a,b € D. Then
(a) + (b) = (ged(a, b)) and (a) N (b) = (lem(a, b)).

Since D is a PID, we have (a) N (b) = (¢) for some ¢ € D.
Then for all m € D,

a,b|lms me(a),(b)eme(an(b)=U) < C|m

so ¢ is an lcm. ]

v
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The PID case

Let D be a PID, and let a,b € D. Then
(a) + (b) = (ged(a, b)) and (a) N (b) = (lem(a, b)).

Corollary (Bézout)

Let D be a PID, and let a,b € D. There exist c,d € D such
that ac + bd = gcd(a, b).
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The PID case

Corollary (Bézout)

Let D be a PID, and let a,b € D. There exist c,d € D such
that ac + bd = gcd(a, b).

Counter-example

This is false if D is a UFD which is not a PID.

For example, take D = Z[x]; we will prove later that this is a
UFD, and that the elements a(x) = x and b(x) = 2 of D are
both irreducible in D.

Since Z is a domain, D* = Z* = {£1}, so a(x) and b(x) are
not associates; therefore ged(a(x), b(x)) = 1.

However, there are no ¢(x), d(x) € D such that

a(x)c(x) + b(x)d(x) = 1, since taking x = 0 would yield
0+2d(0) =1.

This is because D = Z[x] is not a PID, as Z is not a field.
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The ED case

Let D be a ED, let a,b € D, b # 0, and let a = bq + r be the
Euclidean division. Then gcd(a, b) = ged(b, r).

(a) + (b) = (a,b) = (bg+ r,b) = (r,b) = (b) + (r). [

V.
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The ED case

Let D be a ED, let a,b € D, b # 0, and let a = bqg + r be the
Euclidean division. Then gcd(a, b) = gecd(b, r).

Theorem ((Extended) Euclidean algorithm)
Divide a by b, and then b by r, ..., until r = 0; the last
nonzero r is a gcd of a and b.

By working in reverse, we can find c,d € D such that
ac + bd = ged(a, b).
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The ED case

Theorem ((Extended) Euclidean algorithm)

Divide a by b, and then b by r, ..., until r = 0; the last
nonzero r is a gcd of a and b.
By working in reverse, we can find c,d € D such that

ac + bd = ged(a, b).

Example (In D = Z)
Take D=7,a=42 b=16. We compute

G T

so gcd a, b) = 2 and thus lcm(a, b) —ab/2—336 Besides,

2 == 4—6 (10— 6)—6><2—10—(16—10)><2—10—
16 x2—-10x3=16x2—(42—-16x2)x3 =16 x8—42x 3,
whence gecd(a, b) = ac + bd with ¢ = -3, d = 8.
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The ED case

Example (In D = Q[x])
Take D = Q[x], a = x> + x, b = x? + 3. We compute

X3+ x|x2+3 x2 +3| —2x —2x | 3
—2x | x 3 —%x 0 —%X

so gcd(a, b) =3 € D*, so a and b are coprime, and thus
lcm(a, b) = ab. Besides,

1 1 1 1 1
1= 53 = §((X2 + 3) —+ EX(—2X)) = §(X2 + 3) —+ 6X(—2X)
1 1
= §(x2 +3)+ 6x((x3 + x) — x(x* + 3))
= %x(x3 + x) + (—%x2 + %) (x* + 3)
whence 1 = ac + bd with ¢ = %x, d= —%x2 + %
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Factorisation in
polynomial rings,

part 1/3:
Over a field
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Irreducibility in Field[x]

Let F be a field, and let P(x) € F|x].
1 F[x]* = F*=F\{0}.
2 Ifdeg P =1, then P is irreducible in F[x].

3 Ifdeg P > 2 and P is irreducible in F[x], then P has no
roots in F.

4 Ifdeg P =2 or 3 and P has no roots in F, then P is
irreducible in F[x].

1 If PQ =1, then 0 = deg PQ = deg P + deg Q, so
deg P = 0.
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Irreducibility in Field[x]

Let F be a field, and let P(x) € F[x].
1 F[x]* = F* = F\ {0}.
2 Ifdeg P =1, then P is irreducible in F[x].

3 Ifdeg P > 2 and P is irreducible in F|[x], then P has no
roots in F.

4 Ifdeg P =2 or 3 and P has no roots in F, then P is
irreducible in F[x].

2 If P= @R, then 1 =deg P = deg @ + deg R, so
deg @ = 0 and deg R =1 or vice-versa, so Q € F[x]* or
R € F[x]*.
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Irreducibility in Field[x]

Let F be a field, and let P(x) € F|x].
1 F[x]* = F*=F\{0}.
2 Ifdeg P =1, then P is irreducible in F|x].

3 Ifdeg P > 2 and P is irreducible in F[x], then P has no
roots in F.

4 Ifdeg P =2 or 3 and P has no roots in F, then P is
irreducible in F[x].

3 If & € Fis a root of P, then P(x) = (x — @)Q(x), so P
is reducible since (x — ), Q(x) & F[x]* as
deg Q =degP — 1 #0.
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Irreducibility in Field[x]

Let F be a field, and let P(x) € F|x].
1 F[x]* = F*=F\{0}.
2 Ifdeg P =1, then P is irreducible in F|x].

3 Ifdeg P > 2 and P is irreducible in F[x], then P has no
roots in F.

4 Ifdeg P =2 or 3 and P has no roots in F, then P is
irreducible in F[x].

4 If P were reducible, one if its factors would have degree 1,
whence a root. [l
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Irreducibility in Field[x]

Let F be a field, and let P(x) € F|x].
1 F[x]* = F* = F\ {0}.
2 Ifdeg P =1, then P is irreducible in F[x].

3 Ifdeg P > 2 and P is irreducible in F|[x], then P has no
roots in F.

4 Ifdeg P =2 or 3 and P has no roots in F, then P is
irreducible in F[x].

Counter-example
(x? + 1)(x* + 2) is reducible in R[x] but has no root in R.
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Irreducibility in Field[x]

Let F be a field, and let P(x) € F[x].
1 F[x]* = F* = F\ {0}.
2 Ifdeg P =1, then P is irreducible in F[x].

3 Ifdeg P > 2 and P is irreducible in F|[x], then P has no
roots in F.

4 Ifdeg P =2 or 3 and P has no roots in F, then P is
irreducible in F[x].

P(x) = x*> 4+ 1 has no roots in R, so it is irreducible in R[x].
However, P(x) = (x — i)(x + i) becomes reducible in C[x].
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Irreducibility in Field[x]

Let F be a field, and let P(x) € F|x].
1 F[x]* = F*=F\{0}.
2 Ifdeg P =1, then P is irreducible in F[x].

3 Ifdeg P > 2 and P is irreducible in F[x], then P has no
roots in F.

4 Ifdeg P =2 or 3 and P has no roots in F, then P is
irreducible in F[x].

The factorisation —6 (2x + 1) (x* +2) is complete in Q[x].
A ad ——

€Q[x]* deg1 no roots
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Factorisation in
polynomial rings,

part 2/3:
UFD[x] is still a UFD




Content and primitive part

Definition (Content, primitive)

Let D be a UFD, and let F(x) € D[x].
“The” content c(F) € D of F(x) is “the” gcd of the

coefficients of F(x).
We say that F(x) is primitive if c(F) = 1.

So for any 0 # F(x) € D[x], we have F(x) = c(F)pp(F)
where pp(F) = F/c(F) € D[x] is primitive.

Example
In Z[x], F(x) =8x® —6x+12= 2 (4x® —3x+6).
~—

c(F)ez pp(F)EZ[x], primitive

Every monic polynomial is primitive.

Nicolas Mascot Rings, fields, and modules




Content is multiplicative

Lemma

Let D be a UFD. For all F(x), G(x) € D[x],
c(FG) = c(F)c(G).

Writing F = ¢(F)pp(F), G = ¢(G)pp(G), WLOG we assume
F and G primitive. By contradiction, suppose p € D is
irreducible and divides c¢(FG). Then in (D/pD)[x], FG =0,
whereas F, G # 0 as F, G primitive.

However, p is prime as D is a UFD, so D/pD is a domain, and
therefore so is (D/pD)[x], absurd. O
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Gauss's theorem

Theorem (Gauss)

Let D be a UFD, and let F = Frac(D).
Then D[x] is also a UFD, whose irreducibles are exactly

© the constant polynomials which are irreducible in D,

@ the primitive polynomials which are irreducible in F[x].

Z|x] is a UFD. The complete factorisation of
F(x) = —6(2x + 1)(x*> + 2) in Z[x] is
_ 2
1 2 3 (2x+1)(x*+2).

EZ[x]>* irrirr irr irr
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Proof (1/3): They are really irreducible in D[x]

© Let p € D be irreducible.
If p = A(x)B(x) with A, B € D|x], then taking degrees
yields deg A = deg B = 0, so actually A, B € D.
But then A or B € D* since p is irreducible in D.
WLOG A € D*, but then A € D[x]*.

@ Let P(x) € D[x] be primitive and irreducible in F[x].
If P(x) = A(x)B(x) with A, B € D[x], then A, B € F[x],
so WLOG A € F[x]* = F* as P is irreducible in F[x].
Thus A is a nonzero constant in D; but then

1=c(P)=c(AB) = c(A)c(B) = Ac(B),

so actually A € D*.
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Proof (2/3): That's all irreducibles + existence

Let 0 # G(x) € D[x]. Then G(x) € F[x], which is a PID and
hence a UFD, so we can factor

G(x) = AP1(x) -+ P.(x)

where A € F[x]* = F* and the P;(x) irreducibles in F[x]

Clearing denominators, we may assume that the P;(x) lie

in D[x] and are primitive. Write A\ = p/q with p, g € D; then

q | c(q)c(G) = c(qG) = c(pPi(x) -+~ Pi(x)) = pc(P1)- - c(P) = p

so actually A = p/q € D. We factor X in the UFD D:
A=upy---ps, u€ D p;e D irreducibles,

whence G(x) = upy - - psP1(x) - - - P,(x) with

u € D* = D[x]* and the p;, P; irreducible in D[x].

In particular, if G(x) is irreducible, then it must be associate

to either p € D irreducible, or to P(x) € D[x] primitive and

irreducible in F[x].



Proof (3/3): Uniqueness

Let P(x) € D[x] irreducible. WTS P(x) prime in D[x], so
suppose P(x) | G(x)H(x) with G, H € D[x], so that
P(x)Q(x) = G(x)H(x) for some Q(x) € D[x].
Q If P(x) = p irreducible in D, then
p=c(p) | c(p)c(Q) = c(pQ) = c(GH) = c(G)c(H).
As p € D is prime, WLOG p | ¢(G), so p | G in D[x].
@ If P(x) is primitive and irreducible in F[x], then P(x) is
prime in the UFD F[x], so WLOG P | G in F[x], say
G = PR with R € F[x]. Clear denominators:
R(x) = £5(x), with p,q € D and 5(x) € D[x],
c(S) =1. Then qG = pPS, so

q=c(q) | c(q)c(G) = c(qG) = c(pPS) = c(p)c(P)c(S) =p

so R(x) = £5(x) € D[x], whence P | G in D[x]. O
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Factorisation in
polynomial rings,

part 3/3:

Some practical results
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The rational root theorem
Theorem (Rational root theorem)

Let D be a UFD, and A(x) = a,x" + --- + aix + ap € D[x].
If p/q € Frac(D) is a root of A(x) in lowest terms (meaning
ged(p,q) =1), thenp | ap and q | a, in D.

Since p/q is a root,
0=q"A(p/q) = q"(an(p/q)" + -+ a1p/q + a)
_ anpn+ anilpnflq_i_ cee al'anfl 4+ aoqn.
Thus g | (—a,_1p"1q — -+ — a1pq" % — a9q" 1) = —a,p".
So a,p"” contains all the irreducible factors of g; yet g and p”
have no irreducible factor in common, so all these factors

come from a,, so q | a,.
Similarly, p | a0g”, so p | ao. O]

Nicolas Mascot Rings, fields, and modules



The rational root theorem
Theorem (Rational root theorem)

Let D be a UFD, and A(x) = a,x" + --- + aix + ap € D[x].
If p/q € Frac(D) is a root of A(x) in lowest terms (meaning
ged(p,q) =1), thenp | ap and q | a, in D.

Let A(x) = x> — 6x + 2 € Z[x].

If p/q € Q were a root of A(x) in lowest terms, then p | 2 and
g | 1. So the only possible rational roots are +£1 and £2; as
none of those is a root, A(x) has no rational root.

As Q is a field, if A(x) were reducible in Q[x], since

deg A = 3, it would have a root in Q.

So A(x) is irreducible in Q[x]. Since it is also primitive, it is
irreducible in Z[x] as well.
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Eisenstein’s criterion

Theorem (Eisenstein's criterion)

Let D be a UFD, and A(x) = a,x" + --- + aix + ap € D[x].

If c(A) =1 and if there exists p € D irreducible such that
P | dn—1,""" ,4d1,4d0 , bUtpzj(aO?

then A(x) is irreducible in D[x] and in Frac(D)[x].

In this case, we say that A(x) is Eisenstein at p.

A(x) = x* — 6x + 2 € Z|x] is Eisenstein at p = 2:
Indeed, p | 0,6,2 and p? { 2.
Therefore, A(x) is irreducible in Z[x] and in Q[x].
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Eisenstein’s criterion
Theorem (Eisenstein’s criterion)

Let D be a UFD, and A(x) = anx" + -+ + aix + ap € D[x].

If c(A) =1 and if there exists p € D irreducible such that
plani, -, a1, a , but p°{ ao,

then A(x) is irreducible in D[x] and in Frac(D)[x].

Counter-example

A(x) = x>+ 6x + 9 € Z[x] is not Eisenstein at p = 3 even
though p | 6,9, because p? | 9. Actually, A(x) = (x +3)? is
reducible both in Z[x] and in Q[x].

Counter-example

A(x) = x>+ 1 € Z|x] is not Eisenstein at any p € Z, but it is
still irreducible in Q[x] since it has degree 2 and no roots in Q,
and therefore also irreducible in Z[x] since it is primitive.
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Proof of Eisenstein’s criterion

Suppose that A(x) = G(x)H(x) with G, H € DI[x].
In (D/pD)[x], we have G(x)H(x) = A(x) = a,x" with 3, # 0
as p 1 a, since A is primitive.
Write G(x) = gRXR~|— & x", H(x) = hsx® + - -+ + hyx®
with gz, &7, hs, hs #0. If R > ror S > s, then

ax" = A(x) = G(x)H(x) = grhsx"*® + - + grhx"
absurd since grhs, g hs # 0 as D/pD is a domain as p prime.
SoR=r,and S = s; besides R+ S = n, so
deg G =deg G = R and deg H = deg H = S, whence
G(x) = grx® + pGyi(x) with Gy(x) € D[x], deg G; < deg G,
and similarly H(x) = hsx® + pH(x).
If R,S >0, then p? | p?>G;(0)H;(0) = G(0)H(0) = ap, absurd.
WLOG, R =0, so G € D is constant, but then
G =c(G)|c(G)e(H)=c(A)=1s0 G € D* = D[x]*.
Thus A is irreducible in D[x], and hence in Frac(D)[x]. O



